Selectively Patterning Polymer Opal Films via Microimprint Lithography

摘要

Large‐scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large‐area strain sensors, wall‐size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro‐imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre‐patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.

出版物
Adv Opt Mater 2014, 2 (11), 1098–1104
赵其斌
赵其斌
副教授

研究兴趣包括胶体光子晶体组装、材料结构规则度调控、规则及不规则结构在不同条件下的演变过程及物理机理、光学材料及能源类材料制备、微纳结构材料的大面积制备方法、自然界中的功能结构及其在跨种演变视角下的生物进化学等。