Machine Learning Prediction Framework for Tailoring the Optical Response of Particulate Media

摘要

Accurate and efficient prediction of the reflectance of particulate media is crucial for advancing optical technologies. However, traditional reflectance prediction methods often struggle to balance precision with computational efficiency, limiting material design and optimization, especially for large-scale systems. Here, we developed a novel reflectance prediction framework based on the Monte Carlo method (MCM) using a machine learning (ML) strategy. This framework addresses the challenges of low computational accuracy at high particle concentrations and inefficiency in predicting high reflectance in conventional MCMs, achieving simultaneous improvements in both accuracy and efficiency. This realization comes from the mapping of the relationship between input optical features and output reflectance in MCMs by ML and the development of a new experimentally dependent scattering correction model based on this mapping. Rigorous experimental validation and numerical simulations demonstrate the framework’s accuracy, reliability, and versatility across a variety of particulate systems. Furthermore, we applied this framework to create a high-throughput optimization algorithm tailored for radiative cooling applications, effectively guiding the optimization of representative ZrO2/PDMS films and showcasing the framework’s practical potential. Overall, our approach significantly accelerates the optimization of particulate media, paving the way for the development of innovative materials with tailored optical properties.

出版物
ACS Photonics 2025, 12 (5), 2775–2786
赵其斌
赵其斌
副教授

研究兴趣包括胶体光子晶体组装、材料结构规则度调控、规则及不规则结构在不同条件下的演变过程及物理机理、光学材料及能源类材料制备、微纳结构材料的大面积制备方法、自然界中的功能结构及其在跨种演变视角下的生物进化学等。